Explore a collection of patented innovations created by Michigan Tech inventors below.
For the most up-to-date information about these patents, including the availability of Certificates of Correction, be sure to check the United States Patent and Trademark Office's free, publicly accessible database: Patent Public Search https://ppubs.uspto.gov/pubwebapp/static/pages/landing.html
-
Nucleation Control System and Method Leading to Enhanced Boiling Based on Electric Cooling
Amitabh Narain, Soroush Sepahyar, Divya Kamlesh Pandya, and Vibhu Vivek
A cooling module for an electric devise includes a body having formed therein a plurality of channels, a micro-structured boiling surface, a piezoelectric transducer, an inlet header, and an outlet header. Each channel of the plurality of channels is defined by a first channel surface and opposing lateral channel surfaces cooperatively defining a rectangular cross section normal to a channel axis The micro-structured boiling surface is positioned adjacent the first channel surface of each channel. The piezoelectric transducer is in acoustic communication with one of the opposing lateral channel surfaces of each channel and configured to direct acoustic waves on the micro-structured boiling surface. The inlet header is in fluid communication with each channel of the plurality of channels. The outlet header is in fluid communication with each channel of the plurality of channels.
-
Method for Separating Individual Cathode-Active Materials from Li-Ion Batteries
Lei Pan, Tinuade Ololade Folayan, Jeffrey S. Spangenberger, and Bryant J. Polzin
Method of separating individual cathode active materials from a mixture of cathode active materials by froth flotation has been developed. They are based on using appropriate chemical reagents that selectively hydrophobize individual cathode active materials to be recovered, so that they can be collected by air bubbles used in flotation and separated from other mixtures. The chemical reagents are amphiphilic molecules with specialized head groups have a strong affinity to metal elements on surfaces of cathode materials. This method enables a separation of individual cathode active material from a mixture of cathode active materials.
-
Systems, Methods and Techniques for Torrefaction
Ezra Bar Ziv, Stas Zinchik, and Shreyas Sunil Kolapkar
A system for torrefaction of waste material comprising biogenic material and plastic material may comprise a material pre-processing system, a heating and compaction unit, a reactor system comprising a reaction portion and an extrusion portion, and a cutting unit adjacent an outlet of the reactor system. A method for operating a system for torrefaction of waste material comprising biogenic and plastic material may comprise processing the waste material to generate waste material having an aspect ratio between 0.8:1 and 1.2:1 and a largest dimension of less than 4 millimeters (mm); compressing and heating the pre-processed waste material in the heating and compaction unit; heating the compacted waste material in the reactor system to a temperature of 280°C.-500°C; extruding material from the reactor system; and cutting the extruded material into pellets.
-
Salt Production Via Hydrohalite Decomposition
Timothy Eisele
Salt production can include preparing hydrohalite particles by crystallization from saturated brine, adding the hydrohalite particles to the sale brine, thereby forming a hydrohalite-salt brine mixture, agitating the hydrohalite-salt brine mixture until the hydrohalite particles have decomposed into NaCl crystals, and filtering out the NaCl crystals from the salt brine. In some instances, an initial temperature of the salt brine prior to adding the hydrohalite particles is at least 0°C. In some instances, a ratio of salt brine to hydrohalite particles, by weight, is from 0.4 to 29.
-
Power Packet Networks for Wave Energy Converter Arrays
David G. Wilson, Raymond H. Byrne, Steven F. Glover, Tu Anh Nguyen, Rush Robinett, Wayne Weaver, and et. al
One of the biggest challenges for all renewable energy sources (RES) is that they are variable power generators which will require reactive power or energy storage systems (ESS) to provide reliable power quality (ideally power factor of one) at the power grid generation side. The present invention is directed to a power packet network (PPN) for integrating wave energy converter (WEC) arrays into microgrids. Specifically, an array of WECs can be physically positioned such that the incoming regular waves will produce an output emulating an N-phase AC system such that the PPN output power is constant. ESS requirements are thereby minimized whilst maintaining grid stability with high power quality. This will enable RES integration onto a future smart grid for large-scale adoption and cost reduction while preserving high efficiency, reliability, and resiliency.
-
Nonlinear Hydrostatic Control Of A Wave Energy Converter
David Wilson, Giorgio Bacelli, Ryan G. Coe, Rush D. Robinett III, and Ossama Abdelkhalik
Increased energy harvesting is realized using a nonlinear buoy geometry for reactive power generation. By exploiting the nonlinear dynamic coupling between the buoy geometry and the potential wideband frequency spectrum of incoming waves in the controller/buoy design, increased power can be captured in comparison to conventional wave energy converter designs. In particular, the reactive power and energy storage system requirements are inherently embedded in the nonlinear buoy geometry, therefore requiring only simple rate-feedback control.
-
Energy Storage Systems For Electrical Microgrids With Pulsed Power Loads
Wayne Weaver, Rush D. Robinett III, and David Wilson
Pulsed power loads (PPLs) are highly non-linear and can cause significant stability and power quality issues in an electrical microgrid. According to the present invention, many of these issues can be mitigated by an Energy Storage System (ESS) that offsets the PPL. The ESS can maintain a constant bus voltage and decouple the generation sources from the PPL. For example, the ESS specifications can be obtained with an ideal, band-limited hybrid battery and flywheel system.
-
Augmented Road Line Detection And Display System
Jae Seung Lee, Paul Donald Schmalenberg, and Nikola Subotic
An augmented road line display system that includes one or more sensors installed on a vehicle, one or more external databases, and processing circuitry. The processing circuitry is configured to receive inputs from the one or more databases, sensors of the vehicle, and a sub-system of the vehicle, build and validate a road line model to detect or predict a road line based on the inputs received, determine environmental conditions based on the inputs from one or more of the databases, and a sub-system of the vehicle, assign weights to the inputs received based on the environmental conditions to generate weighted inputs, and execute the road line model to determine the road line based on the weighted inputs.
-
On-board propulsion testing apparatus
Lyon B. King
An interface assembly for connecting an on-board propulsion system to a testing facility includes a support member configured for coupling to a manipulation system and a mounting member configured for coupling to the on-board propulsion system. A plurality of channels extends between and couples the mounting member to the support member.
-
Micro-architecture designs and methods for eager execution and fetching of instructions
David Whalley and Soner Onder
Micro-architecture designs and methods are provided. A computer processing architecture may include an instruction cache for storing producer instructions, a half-instruction cache for storing half instructions, and eager shelves for storing a result of a first producer instruction. The computer processing architecture may fetch the first producer instruction and a first half instruction; send the first half instruction to the eager shelves; based on execution of the first producer instruction, send a second half instruction to the eager shelves; assemble the first producer instruction in the eager shelves based on the first half instruction and the second half instruction; and dispatch the first producer instruction for execution.
-
Handheld spectroradiometer system, computer-readable media, and calibration methods
Robert Shuchman, Michael Sayers, Reid W. Sawtell, and Karl Bosse
Non-transitory computer-readable media, spectroradiometer systems, and methods for calibrating a spectroradiometer. In one embodiment, a non-transitory computer-readable medium includes instructions that, when executed by an electronic processor, cause the electronic processor to perform a set of operations. The set of operations includes receiving spectral data regarding an object-of-interest that is captured by a handheld spectroradiometer, detecting a characteristic of the object-of-interest by performing a spectral analysis on the spectral data that is received, and controlling a display to display the characteristic of the object-of-interest.
-
Solid-state transducer, system, and method
Andrew Barnard
The present disclosure includes solid-state transducers, a system, and a method. In one embodiment, a solid-state transducer includes a housing, a first end portion, a second end portion, a plurality of electrical conductors, and a thin-film resistive material. The thin-film resistive material is disposed between and in electrical communication with a plurality of electrical conductors. The thin-film resistive material is configured to receive one or more electrical signals from the plurality of electrical conductors, and generate thermal oscillations to create pressure waves in a medium in response to receiving the one or more electrical signals.
-
Gas measurement device
Megan C. Frost and Weilue He
A device including a first chamber, a second chamber, and a membrane permeable to neutral gases but impermeable to water that is positioned between the first chamber and the second chamber. The membrane includes a first layer including PVDF and PDMS, and the PVDF has a plurality of pores at least partially filled with at least some of the PDMS.
-
Nonlinear controller for nonlinear wave energy converters
David G. Wilson, Giorgio Bacelli, Rush D. Robinett III, and Ossama Abdelkhalik
The present invention is directed to a nonlinear controller for nonlinear wave energy converters (WECs). As an example of the invention, a nonlinear dynamic model is developed for a geometrically right-circular cylinder WEC design for the heave-only motion, or a single degree-of-freedom (DOF). The linear stiffness term is replaced by a nonlinear cubic hardening spring term to demonstrate the performance of a nonlinear WEC as compared to an optimized linear WEC. By exploiting the nonlinear physics in the nonlinear controller, equivalent power and energy capture, as well as simplified operational performance is observed for the nonlinear cubic hardening spring controller when compared to an optimized linear controller.
-
Nonlinear power flow control for networked AC/DC microgrids
David G. Wilson, Rush D. Robinett III, Wayne Weaver, and Steven F. Glover
A method for designing feedforward and feedback controllers for integration of stochastic sources and loads into a nonlinear networked AC/DC microgrid system is provided. A reduced order model for general networked AC/DC microgrid systems is suitable for HSSPFC control design. A simple feedforward steady state solution is utilized for the feedforward controls block. Feedback control laws are provided for the energy storage systems. A HSSPFC controller design is implemented that incorporates energy storage systems that provides static and dynamic stability conditions for both the DC random stochastic input side and the AC random stochastic load side. Transient performance was investigated for the feedforward/feedback control case. Numerical simulations were performed and provided power and energy storage profile requirements for the networked AC/DC microgrid system overall performance. The HSSPFC design can be implemented in the Matlab/Simulink environment that is compatible with real time simulation/controllers.
-
Multi-resonant feedback control of multiple degree-of-freedom wave energy converters
Ossama Abdelkhalik, Shangyan Zou, Rush D. Robinett III, David G. Wilson, Giorgio Bacelli, Ryan G. Coe, and Umesh Korde
Multi-resonant control of a 3 degree-of-freedom (heave-pitch-surge) wave energy converter enables energy capture that can be in the order of three times the energy capture of a heave-only wave energy converter. The invention uses a time domain feedback control strategy that is optimal based on the criteria of complex conjugate control. The multi-resonant control can also be used to shift the harvested energy from one of the coupled modes to another, enabling the elimination of one of the actuators otherwise required in a 3 degree-of-freedom wave energy converter. This feedback control strategy does not require wave prediction; it only requires the measurement of the buoy position and velocity.
-
Multi-resonant feedback control of a single degree-of-freedom wave energy converter
David G. Wilson, Rush D. Robinett III, Ossama Abdelkhalik, Jiajun Song, and Giorgio Bacelli
A multi-resonant wide band controller decomposes the wave energy converter control problem into sub-problems; an independent single-frequency controller is used for each sub-problem. Thus, each sub-problem controller can be optimized independently. The feedback control enables actual time-domain realization of multi-frequency complex conjugate control. The feedback strategy requires only measurements of the buoy position and velocity. No knowledge of excitation force, wave measurements, nor wave prediction is needed. As an example, the feedback signal processing can be carried out using Fast Fourier Transform with Hanning windows and optimization of amplitudes and phases. Given that the output signal is decomposed into individual frequencies, the implementation of the control is very simple, yet generates energy similar to the complex conjugate control.
-
Model predictive control of parametric excited pitch-surge modes in wave energy converters
Ossama Abdelkhalik, Rush D. Robinett III, Shangyan Zou, David G. Wilson, Giorgio Bacelli, Umesh Korde, and Ryan G. Coe
A parametric excitation dynamic model is used for a three degrees-of-freedom (3-DOF) wave energy converter. Since the heave motion is uncoupled from the pitch and surge modes, the pitch-surge equations of motion can be treated as a linear time varying system, or a linear system with parametric excitation. In such case the parametric exciting frequency can be tuned to twice the natural frequency of the system for higher energy harvesting. A parametric excited 3-DOF wave energy converter can harvest more power, for both regular and irregular waves, compared to the linear 3-DOF. For example, in a Bretschneider wave, the harvested energy in the three modes is about 3.8 times the energy harvested in the heave mode alone; while the same device produces about 3.1 times the heave mode energy when using a linear 3-DOF model.
-
Electro-optic modulator, microwave photonic link including an electro-optic modulator, and method of communicating a signal with an electro-optic modulator
Christopher T. Middlebrook and Arash Hosseinzadeh
An electro-optic modulator coupled to an optical source providing an optical power and a radio frequency source providing a radio frequency power. The electro-optic modulator includes a waveguide to receive the optical power, a first ring resonator modulator, and a second ring resonator modulator. The first ring resonator modulator and the second ring resonator modulator receives the radio frequency power, and are coupled to the waveguide for modulating the optical power with the radio frequency power. The first ring resonator modulator and the second ring resonator modulator, with the waveguide, substantially suppress third order intermodulation distortion of a combined power. Also disclosed are a microwave photonic link having the electro-optic modulator and a method of communicating a signal with the electro-optic modulator.
-
Pseudo-spectral method to control three-degree-of-freedom wave energy converters
Ossama Abdelkhalik, Giorgio Bacelli, Shangyan Zou, Rush D. Robinett III, David G. Wilson, and Ryan G. Coe
The invention provides optimal control of a three-degree-of-freedom wave energy converter using a pseudo-spectral control method. The three modes are the heave, pitch and surge. A dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. The invention can use a Fourier series as basis functions to approximate the states and the control. For the parametric excited case, a sequential quadratic programming approach can be implemented to numerically solve for the optimal control. The numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.
-
Generating electrospray from a ferrofluid
Lyon Bradley King
An electrospray device for generating electrospray from a ferrofluid. The electrospray device includes an emitter, an extraction electrode, and a magnet. The emitter is configured to receive a ferrofluidic liquid. The extraction electrode includes an aperture and is positioned a first distance from the emitter. The magnet generates a magnetic field in a first direction toward the emitter. The magnetic field causes Rosensweig instability in the ferrofluidic liquid, and generates a ferrofluidic peak in the ferrofluidic liquid. The magnet is positioned a second distance from the emitter, and the emitter is positioned between the extraction electrode and the magnet. The ferrofluidic liquid is biased at a first electrical potential and the extraction electrode is biased at a second electrical potential. A difference between the first electrical potential and the second electrical potential is sufficient to generate an electric field at the ferrofluidic peak that generates electrospray from the ferrofluidic peak.
-
Agent-based microgrid architecture for generation following protocols
Steven Goldsmith
A system for predicting power and loads over a single, relatively short time horizon. More specifically, a system comprising a Storage Agent (S-agent) Cohort within a grid control society, wherein the system expands G and L intra-cohort protocols to allow the S-cohort to participate in power management of the grid by scheduling storage components in source or load roles as determined by the time-varying state of the power imbalance and by the risk-adjusting capacity margin relationship between the G and L cohorts.
-
Optimal control of wave energy converters
Ossama Abdelkhalik, Rush D. Robinett III, Shangyan Zou, Giorgio Bacelli, David G. Wilson, and Umesh Korde
A wave energy converter and method for extracting energy from water waves maximizes the energy extraction per cycle by estimating an excitation force of heave wave motion on the buoy, computing a control force from the estimated excitation force using a dynamic model, and applying the computed control force to the buoy to extract energy from the heave wave motion. Analysis and numerical simulations demonstrate that the optimal control of a heave wave energy converter is, in general, in the form of a bang-singular-bang control; in which the optimal control at a given time can be either in the singular arc mode or in the bang-bang mode. The excitation force and its derivatives at the current time can be obtained through an estimator, for example, using measurements of pressures on the surface of the buoy in addition to measurements of the buoy position. A main advantage of this approximation method is the ease of obtaining accurate measurements for pressure on the buoy surface and for buoy position, compared to wave elevation measurements.
-
Method to provide meta-stable operation of DC microgrid comprising a pulsed load
David G. Wilson, Wayne Weaver, Rush D. Robinett III, Ronald Matthews, and Steven F. Glover
A Hamiltonian surface shaping power flow control (HSSPFC) method is used to analyze the meta-stability and adjust pulsed power loads on a DC electric power distribution network. Pulsed power loads are nonlinear, time-variant systems that cause nonlinear limit-cycles. During the on periods of a pulsed load, the system can be in an unstable state and is damped back to stability during the off state of the load. Therefore, over the entire period of the pulse the system may only be assessed as meta-stable. As shown through simulation, HIL and hardware results, the HSSPFC method is more accurate than the other small-signal approaches, such as Eigenvalues, Nyquist, and Floquet theory, and can reveal important details about the transient responses and performance.
-
Methods and systems for identifying a particle using dielectrophoresis
Adrienne Minerick, Jeana Collins, Kaela M. Leonard, and Tayloria N.G. Adams
A system for identifying a particle. The system includes a microfluidic device; a microelectrode array including a plurality of electrodes, the microelectrode array disposed within the microfluidic device; a plurality of particles suspended in a solution and delivered to the microelectrode array using the microfluidic device; a signal generator operatively coupled to the microelectrode array; a particle detector adjacent to the microelectrode array; and a controller in operative communication with the signal generator and the particle detector. The controller is configured to apply an oscillating voltage signal to the microelectrode array between a low frequency and a high frequency at a sweep rate, wherein the sweep rate is no more than a maximum sweep rate, and determine a distribution of the plurality of particles relative to the microelectrode array at a plurality of frequency levels between the low frequency and the high frequency.