Exact and approximate runs distributions
Document Type
Article
Publication Date
1-1-1992
Abstract
Let R = Rn denote the total (and unconditional) number of runs of successes or failures in a sequence of n Bernoulli (p) trials, where p is assumed to be known throughout. The exact distribution of R is related to a convolution of two negative binomial random variables with parameters p and q (=1-p). Using the representation of R as the sum of 1-dependent indicators, a Berry-Esséen theorem is derived; the obtained rate of sup norm convergence is O(n - 1/2. This yields an unconditional version of the classical result of Wald and Wolfowitz. © 1992, Taylor & Francis Group, LLC. All rights reserved.
Publication Title
Communications in Statistics - Theory and Methods
Recommended Citation
Godbole, A.,
&
Gornowicz, M.
(1992).
Exact and approximate runs distributions.
Communications in Statistics - Theory and Methods,
21(8), 2151-2167.
http://doi.org/10.1080/03610929208830904
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/9233