Renewable energy pricing driven scheduling in distributed smart community systems

Document Type

Article

Publication Date

10-7-2016

Department

Center for Cyber-Physical Systems; Department of Electrical and Computer Engineering

Abstract

A smart community is a distributed system consisting of a set of smart homes which utilize the smart home scheduling techniques to enable customers to automatically schedule their energy loads targeting various purposes such as electricity bill reduction. Smart home scheduling is usually implemented in a decentralized fashion inside a smart community, where customers compete for the community level renewable energy due to their relatively low prices. Typically there exists an aggregator as a community wide electricity policy maker aiming to minimize the total electricity bill among all customers. This paper develops a new renewable energy aware pricing scheme to achieve this target. We establish the proof that under certain assumptions the optimal solution of decentralized smart home scheduling is equivalent to that of the centralized technique, reaching the theoretical lower bound of the community wide total electricity bill. In addition, an advanced cross entropy optimization technique is proposed to compute the pricing scheme of renewable energy, which is then integrated in smart home scheduling. The simulation results demonstrate that our pricing scheme facilitates the reduction of both the community wide electricity bill and individual electricity bills compared to the uniform pricing. In particular, the community wide electricity bill can be reduced to only 0.06 percent above the theoretic lower bound.

Publisher's Statement

Copyright 2016 IEEE. Publisher's version of record: https://doi.org/10.1109/TPDS.2016.2615936

Publication Title

IEEE Transactions on Parallel and Distributed Systems

Share

COinS