Recovery of Aluminum from Molybdenum Extraction Residue of Spent Hydrodesulfurization Catalyst

Document Type

Article

Publication Date

1-1-2020

Department

Department of Materials Science and Engineering

Abstract

A large amount of molybdenum-bearing spent HDS catalysts are produced in the process of petroleum refining. After extraction of Mo from the spent HDS catalyst, a molybdenum extraction residue containing aluminum, nickel, and cobalt was obtained. In the work presented herein, extraction of aluminum from the molybdenum extraction residue by sodium hydroxide roasting followed by water leaching was investigated. The effects of sodium hydroxide roasting and water leaching on the extraction of aluminum as well as the kinetics of aluminum leaching were studied in detail. It was found that under the optimal conditions, the roasting of molybdenum extraction residue with 60 wt% sodium hydroxide addition at 800 °C for 2 h followed by water leached at 95 °C for 10 min with a liquid–solid ratio of 4 mL/g resulted in the leaching of aluminum up to 91.9%. Kinetics analysis showed that the aluminum leaching process was controlled by diffusion, and the leaching activation energy was determined to be 6.77 kJ/mol. Graphical Abstract: [Figure not available: see fulltext.].

Publisher's Statement

© 2020. The Minerals, Metals & Materials Society. Publisher’s version of record: https://doi.org/10.1007/s40831-020-00285-4

Publication Title

Journal of Sustainable Metallurgy

Share

COinS