Excellent performance of highly conductive porous Na-embedded carbon nanowalls for electric double-layer capacitors with a wide operating temperature range

Document Type

Article

Publication Date

1-1-2017

Department

Department of Materials Science and Engineering

Abstract

Porous Na-embedded carbon (Na@C), which was recently invented, possesses both very high electrical conductivity and a large accessible surface area. These unique properties can meet strict requirements for ideal electrode materials. Herein, it was revealed that symmetric electric double-layer capacitors (EDLCs) with Na@C electrodes exhibited an ultrahigh areal capacitance up to 1.14 F cm-2 at a large current density up to 10 A g-1. Furthermore, a critical issue that the enhancement of mass loading usually sacrifices the gravimetric capacitance was solved with Na@C electrodes, namely, when the mass loading of the Na@C electrode was increased from 4 to 8 mg cm-2, a negligible gravimetric capacitance drop (only 0.2 F g-1) occurred at 1 A g-1. The excellent performance remained almost unchanged with increasing temperature from -10 to 55 °C. In addition, the novel electrode exhibited excellent stability with almost 100% capacitance retention at 5 A g-1 after 4000 galvanostatic charge/discharge cycles. Na@C would be a very promising electrode material for commercial electric double-layer capacitors.

Publisher's Statement

© 2017 The Royal Society of Chemistry. Publisher’s version of record: https://doi.org/10.1039/c7ta01085k

Publication Title

Journal of Materials Chemistry A

Share

COinS