Document Type

Article

Publication Date

2-2023

Department

College of Forest Resources and Environmental Science

Abstract

Estimating the volume of standing trees is a fundamental concern in forestry and is typically accomplished using one or more measurements of stem diameter along with formulae that assume geometric primitives. In contrast, technologies such as terrestrial Light Detection And Ranging (LiDAR) can record very detailed spatial information on the actual surface of an object, such as a tree bole.We present a method using LiDAR that provides accurate volume estimates of tree stems, as well as 2D rasters that display details of stem surfaces, which we call the “unwrapping method.” This method combines the concepts of cylinder fitting, voxelization, and digital elevation models. The method is illustrated and tested using a sample of standing trees, whereby we are able to generate accurate volume estimates from the point cloud, as well as accurate visualization of the scanned stem sections. When compared to volume estimates derived from Huber’s, Smalian’s, and Newton’s formulae, the differences are consistent with previous studies comparing formula-derived volume estimates and water-displacement-derived volume estimates, suggesting the unwrapping method has comparable accuracy to water displacement.

Publisher's Statement

© 2022 The Author(s). Publisher’s version of record: https://doi.org/10.1139/cjfr-2022-0153

Publication Title

Canadian Journal of Forest Research

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.