Document Type

Article

Publication Date

10-3-2022

Department

Department of Materials Science and Engineering

Abstract

A basic requirement for solid oxide fuel cells (SOFCs) is the sintering of electrolyte into a dense impermeable membrane to prevent the mixing of fuel and oxygen for a sufficiently high open-circuit voltage (OCV). However, herein, we demonstrate a different type of fuel cell, a carbonate-superstructured solid fuel cell (CSSFC), in which in situ generation of superstructured carbonate in the porous samarium-doped ceria layer creates a unique electrolyte with ultrahigh ionic conductivity of 0.17 S.cm21 at 550 °C. The CSSFC achieves unprecedented high OCVs (1.051 V at 500 °C and 1.041 V at 550 °C) with methane fuel. Furthermore, the CSSFC exhibits a high peak power density of 215 mW.cm22 with dry methane fuel at 550 °C, which is higher than all reported values of electrolyte-supported SOFCs. This provides a different approach for the development of efficient solid fuel cells.

Publisher's Statement

© 2022 the Author(s). Published by PNAS. Publisher’s version of record: https://doi.org/10.1073/pnas.2208750119

Publication Title

Proceedings of the National Academy of Sciences of the United States of America

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.