Document Type

Article

Publication Date

6-22-2022

Department

Department of Electrical and Computer Engineering

Abstract

Ice environments pose challenges for conventional underwater acoustic localization techniques due to theirmultipath and non-linear nature. In this paper, we compare different deep learning networks, such as Transformers, Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Vision Transformers (ViTs), for passive localization and tracking of single moving, on-ice acoustic sources using two underwater acoustic vector sensors. We incorporate ordinal classification as a localization approach and compare the results with other standard methods. We conduct experiments passively recording the acoustic signature of an anthropogenic source on the ice and analyze these data. The results demonstrate that Vision Transformers are a strong contender for tracking moving acoustic sources on ice. Additionally, we show that classification as a localization technique can outperform regression for networks more suited for classification, such as the CNN and ViTs.

Publisher's Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Publisher’s version of record: https://doi.org/10.3390/s22134703

Publication Title

Sensors

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.