Document Type
Article
Publication Date
12-17-2020
Department
Department of Physics
Abstract
We demonstrate precise determination of atmospheric temperature using vibro-rotational Raman (VRR) spectra of molecular nitrogen and oxygen in the range of 292–293 K. We used a continuous wave fiber laser operating at 10 W near 532 nm as an excitation source in conjunction with a multi-pass cell. First, we show that the approximation that nitrogen and oxygen molecules behave like rigid rotors leads to erroneous derivations of temperature values from VRR spectra. Then, we account for molecular non-rigidity and compare four different methods for the determination of air temperature. Each method requires no temperature calibration. The first method involves fitting the intensity of individual lines within the same branch to their respective transition energies. We also infer temperature by taking ratios of two isolated VRR lines; first from two lines of the same branch, and then one line from the S-branch and one from the O-branch. Finally, we take ratios of groups of lines. Comparing these methods, we found that a precision up to 0.1 K is possible. In the case of O2, a comparison between the different methods show that the inferred temperature was self-consistent to within 1 K. The temperature inferred from N2 differed by as much as 3 K depending on which VRR branch was used. Here we discuss the advantages and disadvantages of each method. Our methods can be extended to the development of instrumentation capable of non-invasive monitoring of gas temperature with broad potential applications, for example, in laboratory, ground-based, or airborne remote sensing.
Publication Title
Remote Sensing
Recommended Citation
Capek, T.,
Borysow, J.,
Mazzoleni, C.,
&
Moraldi, M.
(2020).
Toward non-invasive measurement of atmospheric temperature using vibro-rotational raman spectra of diatomic gases.
Remote Sensing,
12(24), 1-24.
http://doi.org/10.3390/rs12244129
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/14546
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/rs12244129