Active resource allocation for reliability analysis with model bias correction

Document Type

Article

Publication Date

1-11-2019

Abstract

To account for the model bias in reliability analysis, various methods have been developed to validate simulation models using precise experimental data. However, it still lacks a strategy to actively seek critical information from both sources for effective uncertainty reduction. This paper presents an active resource allocation approach (ARA) to improve the accuracy of reliability approximations while reducing the computational, and more importantly, experimental costs. In ARA, the Gaussian process (GP) modeling technique is employed to fuse both simulation and experimental data for capturing the model bias, and further predicting actual system responses. To manage the uncertainty due to the lack of data, a two-phase updating strategy is developed to improve the fidelity of GP models by actively collecting the most valuable simulation and experimental data. With the high-fidelity predictive models, sampling-based methods such as Monte Carlo simulation are used to calculate the reliability accurately while the overall costs of conducting simulations and experiments can be significantly reduced. The effectiveness of the proposed approach is demonstrated through four case studies.

Publisher's Statement

Copyright 2019 by ASME. Publisher's version of record: http://doi.org/10.1115/1.4042344

Publication Title

Journal of Mechanical Design

Share

COinS