Off-campus Michigan Tech users: To download campus access theses or dissertations, please use the following button to log in with your Michigan Tech ID and password: log in to proxy server
Non-Michigan Tech users: Please talk to your librarian about requesting this thesis or dissertation through interlibrary loan.
Date of Award
2019
Document Type
Campus Access Dissertation
Degree Name
Doctor of Philosophy in Electrical Engineering (PhD)
Administrative Home Department
Department of Electrical and Computer Engineering
Advisor 1
Bruce A. Mork
Committee Member 1
Sumit Paudyal
Committee Member 2
Leonard J. Bohmann
Committee Member 3
R. Andrew Swartz
Abstract
Power transformers are key components in the power grid and any unexpected failure can cause widespread blackouts with substantial downtime, loss of revenue, and costs to repair or replace. Detection and discrimination of a short circuit in the early stages of fault origin provide fast relaying operation and save equipment from further damage. This research deals with two such disturbances. The first is a short circuit internal to the transformer windings and the second is a Geomagnetic Disturbance (GMD), an external cosmic event that may magnetically saturate the transformer core and impact the power grid on a larger scale.
In order to model an internal winding fault for both turn-to-turn and turn-to-ground, a methodology was developed to obtain the leakage inductances using Finite Element Analysis. Various challenges were addressed, and advances were made in the modeling and implementation in the EMTP time-domain environment. Further, with the help of developed techniques, winding fault characterization was made and simplification to equivalent mathematical relations was achieved. Benchmarking of this new EMTP model vs. a manufacturer's proprietary model provides excellent confidence in the developed methodology. A wide range of simulations of complex winding faults was performed to compare the performance of conventional differential approaches and inferences were drawn. Laboratory implementation of Park's vector-based approach was achieved. Relay tests were performed to compare the response of the conventional (phase and negative sequence) algorithm to the Park's approach. The Park's approach worked well as an alternative to negative sequence for detecting single-turn turn-to-turn winding faults.
Geomagnetic Induced Currents (GICs) and their possible ill effects have been a concern to the power system operator. In recent times, various utilities, regulators, ISO and industrial partners have shown interest in combating the problems of GIC/GMD when it occurs. Today, empirical phasor analysis-based methods are prevalent. As an improvement on this, time-domain modeling approaches for studying and analyzing the disturbances are devised and developed. These new models are tested, validated and inferences from the study are presented. This time-domain approach captures nonlinear and frequency-dependent effects that are typically linearized or simplified by prevailing phasor-domain simulation tools. This method shows great promise as an improved alternative for GMD analyses.
Recommended Citation
Vemprala, Hemanth Kumar, "ADVANCEMENTS IN TIME-DOMAIN MODELING OF POWER SYSTEM DISTURBANCES", Campus Access Dissertation, Michigan Technological University, 2019.