Date of Award
2019
Document Type
Open Access Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MS)
Administrative Home Department
Department of Mechanical Engineering-Engineering Mechanics
Advisor 1
Jeffrey D. Naber
Advisor 2
Jason R. Blough
Committee Member 1
Mahdi Shahbakhti
Abstract
Shifting consumer mindsets and evolving government norms are forcing automotive manufacturers the world over to improve vehicle performance and also reduce greenhouse gas emissions. A critical aspect of achieving future fuel economy and emission targets is improved powertrain control and diagnostics.
This study focuses on using a sensor fusion based approach to improving control and diagnostics in a gasoline engine. A four cylinder turbocharged engine was instrumented with a suite of sensors including ion sensors, exhaust pressure sensors, crank position sensors and accelerometers. The diagnostic potential of these sensors was studied in detail. The ability of these sensors to detect knock, misfires and also correlate with pressure and combustion metrics was also evaluated.
Lastly a neural network based approach to combine individual sensor signal information was developed. The neural network was used to estimate mean effective pressure and location of fifty percent mass fraction fuel burn. Additionally, the influence of various neural network architectures was studied.
Results showed that under pseudo transient conditions a recursive neural network could use information from the low cost sensors to estimate mean effective pressure within an error of 0.1bar and combustion phasing within 2.5 crank-angle degrees.
Recommended Citation
Muralidhar Nischal, FNU, "APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS AND COMBUSTION FEEDBACK", Open Access Master's Thesis, Michigan Technological University, 2019.