Date of Award
2018
Document Type
Open Access Master's Thesis
Degree Name
Master of Science in Materials Science and Engineering (MS)
Administrative Home Department
Department of Materials Science and Engineering
Advisor 1
Jaroslaw Drelich
Committee Member 1
Daniel Seguin
Committee Member 2
Jeremy Goldman
Abstract
Some insects have the ability to walk on water surface due to hierarchical leg structure and wax coating. This work presents studies of water strider and fire ant leg immersion force profiles to measure resistance of legs to submersion and show orientation effects. A high-sensitivity microbalance measured force during immersion of insect legs at various angles into water droplets. Legs oriented parallel to water surface could support three to five times as much force before immersion, compared to legs in a perpendicular orientation. Water pressure affects the setae structure differently at parallel and perpendicular approaches, and complete wetting is more difficult in the structure observed during parallel approach. Once wetted, perpendicularly oriented legs experienced greater adhesion forces during retraction. Immersion and retraction force profiles were modelled as functions of leg dimensions and angle of approach, with strong correlation to experimental results. The hydrophobic wax coating on water strider legs was also found to decrease adhesion force with little effect on immersion force. Overall, strider legs that are oriented parallel to the water surface, coated in a mildly hydrophobic wax, and have coned setae with nanogrooves to facilitate removal of water, are excellent models for legs of a biomimetic aquatic robot.
Recommended Citation
Hurchalla, Georgia, "Effect of Hierarchical Structure and Orientation on Water-Repellent Legs of Water-Walking Insects", Open Access Master's Thesis, Michigan Technological University, 2018.