Date of Award

2016

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy in Electrical Engineering (PhD)

Administrative Home Department

Department of Electrical and Computer Engineering

Advisor 1

Seyed Reza Zekavat

Committee Member 1

Daniel Fuhrmann

Committee Member 2

Zhaohui Wang

Committee Member 3

Alexander Labovsky

Abstract

Wireless Sensor Networks (WSN) have emerging applications in homogeneous environments such as free space. In addition, WSNs are finding new applications in non-homogeneous (NH) media. All referred applications entail location information of measured data or observed event. Localization in WSNs is considered as the leading remedy, which refers to the procedure of obtaining the sensor nodes relative location utilizing range measurements. Localization via Time-of-Arrival (ToA) estimation has received considerable attention because of high precision and low complexity implementation, however, the traditional techniques are not feasible in NH media due to frequency dispersion of transmitted ranging waveform.

In this work, a novel and effective ToA-based ranging technique for localization in NH media consisting of frequency dispersive sub-media is proposed. First challenges of ToA estimation in NH media regarding frequency dispersion is investigated. Here, a novel technique which improves ToA estimation resolution at fixed bandwidth via maximum rising level detector (MRLD) technique is discussed. The MRLD receiver utilizes oversampling and multiple correlation paths to evaluate with high resolution the path corresponding to the maximum rising level of matched filters output.

In order to achieve higher resolution, a novel and effective ToA estimation is introduced that incorporates orthogonal frequency division multiple access (OFDMA) subcarriers. In the proposed technique, pre-allocated orthogonal subcarriers are utilized to construct a ranging waveform which enables high performance ToA estimation in dispersive NH media in frequency domain. Here, we show that each frequency component of propagated waveform is received with different time delay and phase which dramatically increases the number of unknowns in the received signal system model. Then, we propose a novel idea based on frequency domain analysis of the transmitted OFDMA subcarriers to reduce the number of unknowns exploiting feasible approximations.

Finally, the proposed ToA technique is applied multiple times at different carrier frequencies to create a system of linear equations which can be solved to compute the available sub-mediums thickness and range. Simulation results prove that the proposed technique offers high resolution range measurements given simulated ToA estimation error at different signal to noise ratio regimes in NH media.

Share

COinS