"Developing a regional scale landslide early warning system in a data-s" by Vishnu Chakrapani Lekha

Date of Award

2023

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy in Geological Engineering (PhD)

Administrative Home Department

Department of Geological and Mining Engineering and Sciences

Advisor 1

Thomas Oommen

Committee Member 1

Snehamoy Chatterjee

Committee Member 2

Sajin Kumar K.S.

Committee Member 3

Greg Waite

Abstract

The Landslide Early Warning System (LEWS) is a non-structural approach to mitigate landslide risk by alerting vulnerable communities at an early stage. This study aimed to develop a regional LEWS for rain-induced shallow landslides in Idukki, a mountainous district in India with sparse rainfall data. The landslide model consists of a rainfall component and a slope stability component. Satellite precipitation data can be used in data-sparse regions, but they must be calibrated because they tend to underestimate rainfall. To improve the accuracy of satellite data, this study used a geostatistics-based multi-criteria approach to identify optimal locations to install new rain gauges, thus enhancing the rain gauge network's monitoring capability. A rainfall threshold was developed for Idukki, accounting for intra-seasonal variations in rainfall patterns and extreme rainfall events. The slope stability component of the model is limited by the lack of high-resolution soil properties, which are time-consuming and impractical to acquire using conventional methods. To overcome this limitation, this research proposed developing empirical relationships between sub-surface resistivity and soil properties, providing a regional-scale high-resolution soil property dataset for slope susceptibility assessment. Finally, a cloud-based LEWS was developed using Google Earth Engine, combining the rainfall threshold and high-resolution slope stability models, with the advantage of readily available near real-time data, processing power, user accessibility, and the opportunity for future updates.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS