Date of Award

2021

Document Type

Open Access Master's Report

Degree Name

Master of Science in Mechanical Engineering (MS)

Administrative Home Department

Department of Mechanical Engineering-Engineering Mechanics

Advisor 1

Gordon G. Parker

Committee Member 1

Wayne W. Weaver

Committee Member 2

Hassan Masoud

Committee Member 3

Guy Meadows

Abstract

The most accurate wave energy converter models for heaving point absorbers include nonlinearities, which increase as resonance is achieved to maximize energy capture. The efficiency of wave energy converters can be enhanced by employing a control scheme that accounts for these nonlinearities. This project proposes a sliding mode control for a heaving point absorber that includes the nonlinear effects of the Froude-Krylov force. The sliding mode controller tracks a reference velocity that matches the phase of the excitation force to ensure higher energy absorption. This control algorithm is tested in regular linear waves and is compared to a complex-conjugate control and a nonlinear variation of the complex-conjugate control. The results show that the sliding mode control successfully tracks the reference, keeps the device displacement bounded, and absorbs more energy than the other control strategies. Furthermore, the controller can accommodate disturbances and uncertainties in the dynamic model.

Share

COinS