Document Type

Article

Publication Date

4-6-2017

Abstract

We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as a nontrivial square root of a parent lattice Hamiltonian—in analogy to the passage from a Klein-Gordon equation to a Dirac equation. In the tight-binding setting, the square-root operation admits to induce spectral symmetries at the expense of broken crystal symmetries. As we illustrate in detail for a simple one-dimensional example, the emergent and inherited spectral symmetries equip the energy gaps with independent topological quantum numbers that control the formation of topologically protected states. We also describe an implementation of this system in silicon photonic structures, outline applications in higher dimensions, and provide a general argument for the origin and nature of the emergent symmetries, which are typically nonsymmorphic.

Publisher's Statement

©2017 American Physical Society. Article deposited here in compliance with publisher policies. Publisher's version of record: https://dx.doi.org/10.1103/PhysRevB.95.165109

Publication Title

Physical Review B

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.