Title
Fast imaging of freezing drops: No preference for nucleation at the contact line
Document Type
Article
Publication Date
5-27-2011
Abstract
We employ high-speed imaging of supercooled water drops to study the recently reported phenomenon of surface crystallization. Our geometry avoids the “point-like contact” of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate–liquid–air interface) for a drop resting on a homogeneous silicon substrate. Furthermore, the imaging configuration localizes nucleation sites in the horizontal plane so that their spatial distribution can be examined directly for possible preference near the contact line. Additionally, by using low cooling rates and avoiding substrate cooling, our design minimizes temperature variation within the water drop. The 189 freezing events display nearly perfect spatial uniformity in the immersed (liquid–substrate) region and, thereby, no preference for nucleation at the triple line. This is in contrast to prior experiments where a strong preference for surface freezing (in the contact mode) was observed.
Publication Title
Atmospheric, Environmental and Green Chemistry
Recommended Citation
Gurganus, C.,
Kostinski, A.,
&
Shaw, R.
(2011).
Fast imaging of freezing drops: No preference for nucleation at the contact line.
Atmospheric, Environmental and Green Chemistry,
2(12), 1449-1454.
http://doi.org/10.1021/jz2004528
Retrieved from: https://digitalcommons.mtu.edu/physics-fp/200
Publisher's Statement
Copyright © 2011 American Chemical Society. Publisher's version of record: https://dx.doi.org/10.1021/jz2004528