Document Type

Article

Publication Date

5-2024

Department

Department of Mathematical Sciences

Abstract

In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell's transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.

Publisher's Statement

© The authors. Published by EDP Sciences, SMAI 2024. Publisher’s version of record: https://doi.org/10.1051/m2an/2024033

Publication Title

ESAIM: Mathematical Modelling and Numerical Analysis

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Mathematics Commons

Share

COinS