Document Type

Article

Publication Date

5-10-2024

Department

Department of Chemistry

Abstract

At the nanoscale level, several biological processes take place, owing to the potential that engineered nanomaterials might interrelate with bio-molecules and cellular procedures. This study aimed to synthesize cadmium oxide nanoparticles via a one-step calcination process of tetradentate Schiff base-Cd(II) complex at different temperature ranges. The as-synthesized compounds were carried out via a viz UV–visible, elemental analysis, 1H NMR, molar conductivity, transmission electron microscopy (TEM), FT-IR spectroscopy, and X-ray diffraction (PXRD). The band gap energy and average particle sizes of the CdO particles are respectively (2.69 eV, 3.54 eV), 26.88 nm for CdO@250, and (3.20 eV, 3.57 eV), 25.67 nm for CdO@300, while CdO@350 exhibited the 3.78 eV and 28.42 nm values. The antioxidant accomplishments of the test samples through the scavenging activity of DPPH radicals showed CdO@300 to possess (IC50 = 5.18 ± 0.56 µg/mL). Similarly, the as-synthesized CdO nanoparticles exhibited higher antibacterial activities against S. aureus and E. coli as compared to the corresponding Cd-HMB and ligand (HMB), while ciprofloxacin acted as a standard antibiotic. Furthermore, HMB and its complex Cd-HMB were docked against the DNA gyrase enzymes of S. aureus (PDB IDs: 5CDQ) and E. coli (PDB IDs: 6F86) as receptors. The binding sites docking results showed that the binding energies of HMB and Cd-HMB to 5CDQ ranged from − 3.44 to − 4.99 kcal/mol and from − 6.45 to − 6.64 kcal/mol, while the binding energies related to the target 6F86 are in the ranges of (− 3.64, − 4.76) kcal/mol and (− 6.08, − 6.09) kcal/mol respectively. Therefore, the significant antioxidant and antibacterial activities of the ligand (HMB), Cd-HMB, and CdO NPs review the broad application prospects of these compounds as therapeutic agents for wide-ranging biomedical applications.

Publisher's Statement

© The Author(s) 2024. Publisher’s version of record: https://doi.org/10.1007/s11164-024-05291-9

Publication Title

Research on Chemical Intermediates

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.