Document Type

Article

Publication Date

1-15-2024

Department

Department of Mechanical Engineering-Engineering Mechanics; Department of Biomedical Engineering; Institute of Computing and Cybersystems

Abstract

The stiffness of the extracellular matrix induces differential tension within integrin-based adhesions. However, it has been unclear if the stiffness-dependent differential tension is induced solely by myosin activity. Here, we report that in the absence of myosin contractility, 3T3 fibroblasts still transmit stiffness-dependent differential levels of traction. This myosin-independent differential traction is regulated by polymerizing actin assisted by actin nucleators Arp2/3 and formin where formin has stronger contribution than Arp2/3. Interestingly, we report a four-fold reduction in traction of cells when both Arp2/3 and myosin were inhibited, compared to cells with only myosin inhibition, while there was only a slight reduction in F-actin flow speed in those cells. We show that the conventional rigid-actin-based clutch model is insufficient to explain this force-flow behavior and requires the inclusion of F-actin’s own elasticity into consideration. Our model prediction suggests that Arp2/3 and formin modulate stiffness sensing via stiffening F-actin network with stronger effect from formin. Analysis of F-actin flow reveals stiffness-dependent fluctuation frequency in the flow speed, which is predictable only via the model considering actin elasticity. Our data and model provide a potential role of the polymerizing actin and its elasticity in myosin-independent mechanosensing.

Publisher's Statement

This is a preprint; it has not been peer reviewed by a journal.

Version of Record: A version of this preprint was published at Communications Materials on January 15th, 2024. See the published version at https://doi.org/10.21203/rs.3.rs-2679496/v1

Publication Title

Research Square

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Preprint

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.