A hybrid memory architecture supporting fine-grained data migration

Document Type

Article

Publication Date

1-22-2024

Department

Department of Computer Science

Abstract

Hybrid memory systems composed of dynamic random access memory (DRAM) and Non-volatile memory (NVM) often exploit page migration technologies to fully take the advantages of different memory media. Most previous proposals usually migrate data at a granularity of 4 KB pages, and thus waste memory bandwidth and DRAM resource. In this paper, we propose Mocha, a non-hierarchical architecture that organizes DRAM and NVM in a flat address space physically, but manages them in a cache/memory hierarchy. Since the commercial NVM device-Intel Optane DC Persistent Memory Modules (DCPMM) actually access the physical media at a granularity of 256 bytes (an Optane block), we manage the DRAM cache at the 256-byte size to adapt to this feature of Optane. This design not only enables fine-grained data migration and management for the DRAM cache, but also avoids write amplification for Intel Optane DCPMM. We also create an Indirect Address Cache (IAC) in Hybrid Memory Controller (HMC) and propose a reverse address mapping table in the DRAM to speed up address translation and cache replacement. Moreover, we exploit a utility-based caching mechanism to filter cold blocks in the NVM, and further improve the efficiency of the DRAM cache. We implement Mocha in an architectural simulator. Experimental results show that Mocha can improve application performance by 8.2% on average (up to 24.6%), reduce 6.9% energy consumption and 25.9% data migration traffic on average, compared with a typical hybrid memory architecture–HSCC.

Publication Title

Frontiers of Computer Science

Share

COinS