Document Type
Article
Publication Date
11-24-2023
Department
Department of Electrical and Computer Engineering
Abstract
The Third Generation Partnership Project (3GPP) has specified Cellular Vehicle-to-Everything (C-V2X) radio access technology in Releases 15–17, with an emphasis on facilitating direct communication between vehicles through the interface, sidelink PC5. This interface provides end-to-end network slicing functionality together with a stable cloud-native core network. The performance of direct vehicle-to-vehicle (V2V) communications has been improved by using the sidelink interface, which allows for a network infrastructure bypass. Sidelink transmissions make use of orthogonal resources that are either centrally allocated (Mode 1, Release 14) or chosen by the vehicles themselves (Mode 2, Release 14). With growing interest in connected and autonomous vehicles, the advancement in radio access technologies that facilitate dependable and low-latency vehicular communications is becoming more significant. This is especially necessary when there are heavy traffic conditions and patterns. We thoroughly examined the New Radio (NR) sidelink’s performance based on 3GPP Releases 15–17 under various vehicle densities, speeds, and distance settings. Thus, by evaluating sidelink’s strengths and drawbacks, we are able to optimize resource allocation to obtain maximum coverage in urban areas. The performance evaluation was conducted on Network Simulator 3 (NS3.34/5G-LENA) utilizing various network metrics such as average packet reception rate, throughput, and latency.
Publication Title
Vehicles
Recommended Citation
Tabassum, M.,
Bastos, F.,
Oliveira, A. M.,
&
Klautau, A.
(2023).
NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services.
Vehicles,
5(4), 1692-1706.
http://doi.org/10.3390/vehicles5040092
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/302
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/vehicles5040092