BIMW: Blockchain-Enabled Innocuous Model Watermarking for Secure Ownership Verification

Document Type

Article

Publication Date

11-1-2025

Abstract

The integration of artificial intelligence (AI) and edge computing gives rise to edge intelligence (EI), which offers effective solutions to the limitations of traditional cloud-based AI; however, deploying models across distributed edge platforms raises concerns regarding authenticity, thereby necessitating robust mechanisms for ownership verification. Currently, backdoor-based model watermarking techniques represent a state-of-the-art approach for ownership verification; however, their reliance on model poisoning introduces potential security risks and unintended behaviors. To solve this challenge, we propose BIMW, a blockchain-enabled innocuous model watermarking framework that ensures secure and trustworthy AI model deployment and sharing in distributed edge computing environments. Unlike widely applied backdoor-based watermarking methods, BIMW adopts a novel innocuous model watermarking method called interpretable watermarking (IW), which embeds ownership information without compromising model integrity or functionality. In addition, BIMW integrates a blockchain security fabric to ensure the integrity and auditability of watermarked data during storage and sharing. Extensive experiments were conducted on a Jetson Orin Nano board, which simulates edge computing environments. The numerical results show that our framework outperforms baselines in terms of predicate accuracy, p-value, watermark success rate (WSR), and harmlessness H. Our framework demonstrates resilience against watermarking removal attacks, and it introduces limited latency through the blockchain fabric.

Publication Title

Future Internet

Share

COinS