Document Type

Article

Publication Date

10-18-2025

Department

College of Engineering; Department of Mechanical and Aerospace Engineering; College of Computing; Department of Applied Computing

Abstract

Multi-agent coordination with task allocation, routing, and scheduling presents critical challenges when deploying heterogeneous robotic systems in constrained agricultural environments. These systems involve real-time sensing during their operations with various sensors, and having quick updates on coordination based on sensed data is critical. This paper addresses the specific requirements of harvesting automation through three heuristic approaches: (1) primal-dual workload balancing inspired by combinatorial optimization techniques, (2) greedy task assignment with iterative local optimization, and (3) LLM-based constraint processing through prompt engineering. Our agricultural application scenario incorporates robot size constraints for navigating narrow crop rows while optimizing task completion time. The greedy heuristic employs rapid initial task allocation based on proximity and capability matching, followed by iterative route refinement. The primal-dual approach adapts combinatorial optimization principles from recent multi-depot routing solutions, dynamically redistributing workloads between robots through dual variable adjustments to minimize maximum completion time. The LLM-based method utilizes structured prompt engineering to encode spatial constraints and robot capabilities, generating feasible solutions through successive refinement cycles. We implemented and compared these approaches through extensive simulations. Preliminary results demonstrate that all three approaches produce feasible solutions with reasonable quality. The results demonstrate the potential of the methods for real-world applications that can be quickly adopted into variations of the problem to offer valuable insights into solving complex coordination problems with heterogeneous multi-robot systems.

Publisher's Statement

Publisher's version of record: https://doi.org/10.3390/s25206443

Publication Title

Sensors (Basel, Switzerland)

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.