Document Type

Article

Publication Date

10-28-2025

Department

Department of Physics

Abstract

Cloud processes relevant to radiative and precipitation properties depend on the shape of the cloud droplet size distribution. Recent holographic observations revealed that cloud droplet populations do not have the same size distribution shapes throughout but form regions of characteristic distributions with similar microphysical properties. We investigate the existence and properties of these characteristic distributions within Large-Eddy Simulations of stratocumulus clouds using Lagrangian and bin microphysics schemes. Distribution types are identified, revealing localized characteristic distributions that vary on the scale of the largest convective cell for simulations with bin microphysics. The results from the Lagrangian microphysics scheme hint at similar behavior. Compared to observations, the simulated clouds are much more uniform. Analysis of the LES results suggests a connection to the local entrainment rate, so the poorly resolved entrainment interface in LES may be a cause of the uniformity. The uniformity of the large-scale forcing could also be a factor.

Publisher's Statement

© 2025. The Author(s). Publisher’s version of record: https://doi.org/10.1029/2025GL116021

Publication Title

Geophysical Research Letters

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.