Catalytic Mechanism of the Bacterial Non-Heme Fe(II) and 2-Oxoglutarate Dependent Enzyme AlkB with Single-Stranded DNA Containing Complex Guanine Adducts
Document Type
Article
Publication Date
8-4-2025
Abstract
The bacterial nonheme Fe(II)/2-oxoglutarate (2OG)-dependent enzyme AlkB repairs alkylation damages in single-stranded DNA (ss-DNA) nucleotide bases. This study examines for the first time the reaction mechanism of the AlkB-catalyzed repair of alkylated and exocyclic guanine adducts (GAs) in single-stranded DNA induced by everyday chemical exposures associated with cancers and other genetic disorders. The studied substrates include N2-furfurylguanine (FF-dG), N2-tetrahydrofuran-2-yl-methylguanine (HF-dG), 3-(2'-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-6-hydroxypyrimido[1,2-α]purin-10(3H)-one (α-OH-PdG), 3-(2'-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-α]purin-10(3H)-one (γ-OH-PdG), and 3-(2'-deoxy-β-D-erythro-pentofuranosyl) pyrimido[1,2-α]purin-10(3H)-one (MdG). Using molecular dynamics-based combined quantum mechanics/molecular mechanics (QM/MM) and QM calculations, we provide unique mechanistic insights into AlkB's catalytic reaction pathways with ss-DNA containing complex alkylated/exocyclic GAs in strong correlation to experimental studies. While HF-dG, FF-dG, α-OH-PdG, and γ-OH-PdG are repaired through C-H hydroxylation, MdG follows epoxidation. The study elucidated that the repair mechanism favors the open tautomer of γ-OH-PdG and the closed tautomer of α-OH-PdG, respectively, in agreement with experimental studies, due to the preferable SCS interactions and the catalytic domain's loop L1 and L4 dynamics. Our study also elucidated that the posthydroxylation/postepoxidation steps proceed in water rather than the enzyme. The results reveal the unique catalytic mechanism of AlkB with ss-DNA containing complex GAs, which can be used in drug design and metalloenzyme redesign.
Publication Title
Inorganic chemistry
Recommended Citation
Melayikandy, S.,
Krishnan, A.,
Varghese, A.,
Jaber Sathik Rifayee, S. B.,
Waheed, S. O.,
Ramanan, R.,
Li, D.,
Christov, C. Z.,
&
Karabencheva-Christova, T. G.
(2025).
Catalytic Mechanism of the Bacterial Non-Heme Fe(II) and 2-Oxoglutarate Dependent Enzyme AlkB with Single-Stranded DNA Containing Complex Guanine Adducts.
Inorganic chemistry,
64(30), 15650-15666.
http://doi.org/10.1021/acs.inorgchem.5c02176
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/1914