Document Type

Article

Publication Date

7-2025

Department

Department of Chemistry

Abstract

Lanthanum-based nanoparticles have garnered significant attention for their potential in antimicrobial applications due to their unique properties and mechanisms of action. This review explores the antimicrobial efficacy of various lanthanum-based nanoparticles, including La2O3, La(OH)3, and LaF3, highlighting their mechanisms of action such as disruption of microbial cell walls, generation of reactive oxygen species (ROS), and interference with microbial DNA and protein synthesis. Despite their promising attributes, several challenges hinder their practical application, including limited understanding of their mechanisms, concerns over biocompatibility and toxicity, and difficulties in scaling up production. Emerging trends in nanoparticle research, such as surface functionalization, smart delivery systems, and green synthesis methods, present innovative approaches to enhance the efficacy and sustainability of lanthanum-based nanoparticles. Additionally, integrating these nanoparticles into advanced materials and exploring combination therapies offer new possibilities for expanding their applications. Future research should focus on elucidating the detailed mechanisms of antimicrobial action, conducting comprehensive biocompatibility and environmental impact studies, and developing scalable and cost-effective synthesis methods. Addressing these challenges and embracing emerging trends will be crucial for advancing the application of lanthanum-based nanoparticles and leveraging their benefits for improved antimicrobial solutions in both clinical and industrial contexts. This review provides a comprehensive overview of the current state of research on lanthanum-based nanoparticles, identifying key areas for further investigation and highlighting their potential to revolutionize antimicrobial technology.

Publisher's Statement

© 2025 The Author(s). Published by Elsevier Ltd. Publisher’s version of record: https://doi.org/10.1016/j.nxmate.2025.100719

Publication Title

Next Materials

Version

Publisher's PDF

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.