Document Type

Article

Publication Date

3-21-2025

Department

Department of Physics

Abstract

The environmental stability of 2D monolayers is critical for their applications across various technology-related fields. These monolayers can degrade when exposed to gaseous components in the environment, so minimizing these degrading effects is essential. In this paper, chlorine exposure to the 2D monolayers, specifically graphene, silicene, phosphorene, and h-BN monolayer, is investigated using van der Waals corrected density functional theory. The results find that atomic chlorine chemisorbs on graphene, h-BN, silicene, and phosphorene with adsorption energies of −1.09, −0.65, −3.10, and −1.74 eV/atom, and bond distances of 3.0, 2.6, 2.2, and 2.1 Å, respectively. In contrast, molecular Cl2 exhibits physisorption with adsorption energies around −0.22 eV and bond distances ranging from 3.3 to 3.6 Å. NEB calculations show that Cl2 dissociative chemisorption is exothermic on buckled monolayers (silicene and phosphorene) and endothermic on planar monolayers (graphene and h-BN). On buckled surfaces, Cl2 dissociates after overcoming energy barriers of 2.0 eV for silicene and 3.2 eV for phosphorene, forming a stable chemisorbed state that is 0.9 eV lower than the physisorbed state. However, on planar monolayers, Cl2 remains in the physisorbed state because the dissociated chemisorbed state is ≈ 1.5 eV higher in energy. These differences are due to the weaker π-bonds in buckled monolayers, which make dissociation easier, while planar monolayers stabilize the molecular form.

Publisher's Statement

Publisher's record: https://doi.org/10.1021/acsomega.5c01346

Copyright © 2025 The Authors.

Publication Title

ACS Omega

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.