Document Type

Article

Publication Date

1-10-2025

Department

Department of Physics

Abstract

A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ≈0.8 PeV has made it the second confirmed “PeVatron” microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in 2024 September. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of ≳4.5σ and >10σ based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of 7′ ± 3′ (13 ± 5 pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (∼80 μG) or a suppressed diffusion coefficient (∼1027 cm2 s−1 at 100 TeV). The integrated X-ray flux, (4-6) × 10−12 erg s−1 cm−2 (2-10 keV), would require a magnetic field strength higher than the Galactic mean (≳8 μG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ∼2 × 1039 erg s−1, which is comparable to the Eddington luminosity of this system.

Publisher's Statement

© 2025. The Author(s). Published by the American Astronomical Society. Publisher’s version of record: https://doi.org/10.3847/2041-8213/ad9d11

Publication Title

Astrophysical Journal Letters

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.