Multi-Frequency Power-Channel Power-Packet Networks
Document Type
Conference Proceeding
Publication Date
8-23-2023
Department
Department of Mechanical Engineering-Engineering Mechanics
Abstract
Traditionally, power systems have been designed to operate with fixed frequency/voltage distribution systems. This frequency (0 Hz DC, 50 Hz European, 60 Hz, 400 Hz, or other) optimizes the system's performance. This approach has worked well throughout history, enabling the development of a design, analysis, and maintenance tool suite. Regulating the voltage in this way results in additional control effort that can impact the system's performance. Not to mention that single-frequency operation could be considered sub-optimal in energy and power density. In particular, this is expected to be true for systems with highly stochastic sources or loads (e.g., PV, wind). For example, consider military power systems designed to source hotel loads and large pulsed electric loads (e.g., rail gun, electromagnetic launcher). Introducing electric weapons moves impedance matching/energy storage from mechanical/chemical based to electrical-based. By definition, these pulsed loads are multi-frequency and impossible to match impedance to the sources using traditional methods without incurring additional losses in the system. Such pulses can also result in significant voltage swings/transients on the bus. This paper will present the foundations of a generalized power-packet network (PPN) that represents a multi-frequency power system where power channels can be impedance matched independently.
Publication Title
2023 IEEE 24th Workshop on Control and Modeling for Power Electronics, COMPEL 2023
ISBN
9798350316186
Recommended Citation
Weaver, W.,
Hassell, T.,
Robinett, R. D.,
&
Wilson, D.
(2023).
Multi-Frequency Power-Channel Power-Packet Networks.
2023 IEEE 24th Workshop on Control and Modeling for Power Electronics, COMPEL 2023.
http://doi.org/10.1109/COMPEL52896.2023.10221194
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/119