Document Type

Article

Publication Date

9-19-2024

Department

Department of Biomedical Engineering

Abstract

The feasibility of utilizing salicylhydroxamic acid (SHAM) as a new adhesive molecule for designing structural adhesives is investigated in this study. SHAM-containing polymers were prepared with a hydroxyethyl methacrylate (HEMA) or methoxyethyl acrylate (MEA) backbone and mixed with polyvinylidene fluoride (PVDF). PVDF was included to increase the cohesive property of the adhesive through hydrogen bond (H-bond) formation with the adhesive polymers. SHAM-containing adhesive demonstrated lap shear adhesion strength (S ) greater than 0.9 MPa to glass, metal, and polymeric surfaces. Adhesive formulations with elevated SHAM-content also demonstrated increased adhesive properties with S values reaching as high as 4.8 MPa. Due to the physically crosslinked nature of these adhesives, formulations with extensive H-bonding resulted in strong adhesion and stability. HEMA consists of a terminal hydroxyl group with both H-bond donor and acceptor, which enabled HEMA-containing adhesives to demonstrate strong adhesion even without PVDF. On the other hand, MEA contains a methoxy group that lacks H-bond donors for forming H-bonding and MEA-containing adhesives required PVDF to provide H-bond acceptors to increase its cohesive property. An aging study was performed on the bonded joints. While the adhesive joints did not demonstrate any reduction in S values over 25 days when incubated in a dry condition, S values decreased by 80% over 48 h when incubated in water. This is potentially due to the hydrophilic and physically crosslinked nature of the adhesive. Nevertheless, the SHAM-containing adhesive outperformed a catechol-containing adhesive and epoxy glue and is a promising new adhesive molecule for designing structural adhesives.

Publisher's Statement

© 2024 The Author(s). Published by the Royal Society of Chemistry. Publisher’s version of record: https://doi.org/10.1039/D4LP00139G

Publication Title

RSC applied polymers

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.