Optimizing Dual-Axis Solar Panel Operation in an Agrivoltaic System and Implications for Power Systems

Anna Stuhlmacher, Michigan Technological University
Johanna L. Mathieu, University of Michigan, Ann Arbor
Peter Seiler, University of Michigan, Ann Arbor

Abstract

The concept of agrivoltaics, or co-locating photovoltaic panels and crops, is viewed as a potential solution to competing land demands for food and energy production. In this paper, we propose an optimal dual-axis photovoltaic panel formulation that adjusts the panel position to maximize power generation subject to crop requirements. Through convex relaxations and shading factor approximations, we reformulate the problem as a convex second-order cone program and solve for the panel position adjustments away from the sun-tracking trajectory. We demonstrate our approach in a case study by comparing our approach with an approach that maximizes solar power capture and a scenario in which there are only crops. We found that we are able to successfully adjust the panel position while accounting for the trade-offs between the photovoltaic panels' energy production and the crop health. Additionally, optimizing the operation of an agrivoltaic system allows us to better understand agrivoltaic systems as a resource connected to the power grid.