Partitions with Fixed Points in the Sequence of First-Column Hook Lengths

Document Type

Article

Publication Date

1-1-2024

Abstract

Recently, Blecher and Knopfmacher applied the notion of fixed points to integer partitions. This has already been generalized and refined in various ways such as h-fixed points for an integer parameter h by Hopkins and Sellers. Here, we consider the sequence of first column hook lengths in the Young diagram of a partition and corresponding fixed hooks. We enumerate these, using both generating function and combinatorial proofs, and find that they match occurrences of part sizes equal to their multiplicity. We establish connections to work of Andrews and Merca on truncations of the pentagonal number theorem and classes of partitions partially characterized by certain minimal excluded parts (mex).

Publication Title

Annals of Combinatorics

Share

COinS