Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data

Authors

A. Abdul Halim, The University of Adelaide
P. Abreu, Instituto Superior Técnico
M. Aglietta, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
I. Allekotte, Centro Atomico Bariloche
K. Almeida Cheminant, Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences
A. Almela, Comision Nacional de Energia Atomica Argentina
R. Aloisio, Gran Sasso Science Institute
J. Alvarez-Muñiz, Universidad de Santiago de Compostela
J. Ammerman Yebra, Universidad de Santiago de Compostela
G. A. Anastasi, Istituto Nazionale di Fisica Nucleare, Sezione di Catania
L. Anchordoqui, Lehman College
B. Andrada, Comision Nacional de Energia Atomica Argentina
S. Andringa, Instituto Superior Técnico
L. Apollonio, Istituto Nazionale di Fisica Nucleare, Sezione di Milano
C. Aramo, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
P. R. Araújo Ferreira, Rheinisch-Westfälische Technische Hochschule Aachen
E. Arnone, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
J. C. Arteaga Velázquez, Universidad Michoacana de San Nicolás de Hidalgo
P. Assis, Instituto Superior Técnico
G. Avila, Comision Nacional de Energia Atomica Argentina
E. Avocone, Laboratori Nazionali del Gran Sasso
A. Bakalova, Institute of Physics of the Czech Academy of Sciences
F. Barbato, Gran Sasso Science Institute
A. Bartz Mocellin, Colorado School of Mines
J. A. Bellido, The University of Adelaide
C. Berat, Université Grenoble Alpes
M. E. Bertaina, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
G. Bhatta, Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences
M. Bianciotto, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
P. L. Biermann, Max Planck Institute for Radio Astronomy
V. Binet, Instituto de Fisica Rosario

Document Type

Article

Publication Date

7-1-2024

Abstract

The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)(100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E−2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.

Publication Title

Journal of Cosmology and Astroparticle Physics

Share

COinS