Stand-level allometry in Pinus taeda as affected by irrigation and fertilization

Document Type

Article

Publication Date

1-1-1999

Abstract

Changing environmental conditions have the potential to alter allometric relationships between plant parts, possibly leading to ecosystem-level feedbacks. We quantified allometric shifts in field-grown loblolly pine (Pinus taeda L.) in response to altered resource availability based on data from multiple harvests to correct for size-related changes in biomass partitioning. A replicated factorial arrangement of irrigation and fertilization treatments was applied for 4 years to an 8-year-old loblolly pine plantation on a well-drained, low fertility site in North Carolina. Destructive and nondestructive growth measurements were used to develop treatment-specific regressions to estimate stand-level biomass for ephemeral and perennial plant parts, both above- and belowground. Stand-level allometric analysis indicated that irrigation increased biomass partitioning to fine roots and decreased partitioning to foliage, relative to other plant parts. Fertilization increased partitioning to perennial tissues (coarse roots, taproots, and branches) and decreased partitioning to ephemeral tissues (foliage and fine roots). Changes in allometry were small ( < 6 %) but statistically significant, indicating that biomass partitioning in loblolly pine changes with altered resource availability, but is probably under strong ontogenetic control.

Publication Title

Tree Physiology

Share

COinS