The construction and properties of boundary kernels for smoothing sparse multinomials

Document Type

Article

Publication Date

1-1-1994

Abstract

In recent years several authors have investigated the use of smoothing methods for sparse multinomial data. In particular, Hall and Titterington (1987) studied kernel smoothing in detail. It is pointed out here that the bias of kernel estimates of probabilities for cells near the boundaries of the multinomial vector can dominate the mean sum of squared error of the estimator for most true probability vectors. Fortunately, boundary kernels devised to correct boundary effects for kernel regression estimators can achieve the same result for these estimators. Properties of estimates based on boundary kernels are investigated and compared to unmodified kernel estimates and maximum penalized likelihood estimates. Monte Carlo evidence indicates that the boundary-corrected kernel estimates usually outperform uncorrected kernel estimates and are quite competitive with penalized likelihood estimates. © 1994 Taylor & Francis Group, LLC.

Publication Title

Journal of Computational and Graphical Statistics

Share

COinS