Document Type


Publication Date



Department of Electrical and Computer Engineering; Center for Data Sciences


Automated classification of earthquake damage in remotely-sensed imagery using machine learning techniques depends on training data, or data examples that are labeled correctly by a human expert as containing damage or not. Mislabeled training data are a major source of classifier error due to the use of imprecise digital labeling tools and crowdsourced volunteers who are not adequately trained on or invested in the task. The spatial nature of remote sensing classification leads to the consistent mislabeling of classes that occur in close proximity to rubble, which is a major byproduct of earthquake damage in urban areas. In this study, we look at how mislabeled training data, or label noise, impact the quality of rubble classifiers operating on high-resolution remotely-sensed images. We first study how label noise dependent on geospatial proximity, or geospatial label noise, compares to standard random noise. Our study shows that classifiers that are robust to random noise are more susceptible to geospatial label noise. We then compare the effects of label noise on both pixel- and object-based remote sensing classification paradigms. While object-based classifiers are known to outperform their pixel-based counterparts, this study demonstrates that they are more susceptible to geospatial label noise. We also introduce a new labeling tool to enhance precision and image coverage. This work has important implications for the Sendai framework as autonomous damage classification will ensure rapid disaster assessment and contribute to the minimization of disaster risk.

Publisher's Statement

Copyright 2017 by the authors. Licensee MDPI, Basel, Switzerland. Article deposited here in compliance with publisher policies. Publisher's version of record:

Publication Title

Remote Sensing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.