Multinomial probability estimation by wavelet thresholding

Document Type

Article

Publication Date

1-1-2009

Abstract

In this article, we introduce a wavelet threshold estimator to estimate multinomial probabilities. The advantages of the estimator are its adaptability to the roughness and sparseness of the data. The asymptotic behavior of the estimator is investigated through an often-used criteria: the mean sum of squared error (MSSE). We show that the MSSE of the estimator achieves the optimal rate of convergence. Its performance on finite samples is examined through simulation studies which show favorable results for the new estimator over the commonly used kernel estimator.

Publication Title

Communications in Statistics - Theory and Methods

Share

COinS