Characterization of PP/MG(OH) < inf> 2 and PP/Nanoclay composites with supercritical CO < inf> 2 (scCO < inf> 2 )

Document Type

Article

Publication Date

1-1-2011

Abstract

In this article, supercritical carbon dioxide (scCO2) is used to form a high density microcellular foam structure to reduce the polymer use and facilitate dispersion of Mg(OH)2 and Nanoclay fillers. A twin-screw extruder system was used to predistribute the inorganic filler from the PP polymer, resulting composite PP/filler pellets. This followed by the use of a single-screw extruder wherein supercritical carbon dioxide is introduced in the formulation. Finally the resulting foam PP/filler/CO2 pellets are injection molded into test samples. The structure and properties of the composites are characterized using a scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and density measurements. Furthermore, PP/Clay/Mg(OH) 2 polymer composites are subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, % elongation, Izod impact strength, hardness, Heat deflection temperature (HDT), Vicat softening point and Melt flow index (MFI). © Taylor & Francis Group, LLC.

Publication Title

Polymer - Plastics Technology and Engineering

Share

COinS