Comparison of the completely renormalized equation-of-motion coupled-cluster and Quantum Monte Carlo results for the low-lying electronic states of methylene

Document Type

Conference Proceeding

Publication Date

10-10-2010

Abstract

The left-eigenstate completely renormalized (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as CR-EOMCC(2,3) [M. Woch et al., Mol. Phys. 104, 2149 (2006); P. Piecuch et al., Int. J. Quantum Chem. 109, 3268 (2009)], and the companion ground-state CR-CC(2,3) methodology [P. Piecuch and M. Woch, J. Chem. Phys. 123, 224105 (2005); P. Piecuch et al., Chem. Phys. Lett. 418, 467 (2006)] are used to determine the total electronic and adiabatic excitation energies corresponding to the ground and lowest three excited states of methylene. The emphasis is on comparing the CR-CC(2,3)/CR-EOMCC(2,3) results obtained with the large correlation-consistent basis sets of the aug-cc-pCV xZ (x = T, Q, 5) quality and the corresponding complete basis set (CBS) limits with the recently published variational and diffusion Quantum Monte Carlo (QMC) data [P. Zimmerman et al., J. Chem. Phys. 131, 124103 (2009)]. It is demonstrated that the CBS CR-CC(2,3)/CR-EOMCC(2,3) results are in very good agreement with the best QMC, i.e. diffusion MC (DMC) data, with errors in the total and adiabatic excitation energies of all calculated states on the order of a few millihartree and less than 0.1 eV, respectively, even for the challenging, strongly multi-reference C1A1 state for which the basic EOMCC approach with singles and doubles completely fails. The agreement between the CBS CR-CC(2,3)/CR-EOMCC(2,3) and variational MC (VMC) results for the total energies is not as good as in the DMC case, but the excitation energies resulting from the CBS CR-CC(2,3)/CR-EOMCC(2,3) and VMC calculations agree very well. © 2010 Taylor & Francis.

Publication Title

Molecular Physics

Share

COinS