Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations L03102
Document Type
Article
Publication Date
2-16-2009
Abstract
Existing algorithms that use satellite measurements of solar backscattered ultraviolet (BUV) radiances to retrieve sulfur dioxide (SO2) vertical columns underestimate the large SO2 amounts encountered in fresh volcanic eruption clouds. To eliminate this underestimation we have developed a new technique, named the Iterative Spectral Fitting (ISF) algorithm, for accurate retrieval of SO2 vertical columns in the full range of volcanic emissions. The ISF algorithm is applied to Ozone Monitoring Instrument (OMI) BUV measurements of the Sierra Negra eruption (Galàpagos Islands, Ecuador) in October 2005. The results represent major improvements over the operational OMI SO2 products. Based on the ISF data, we report the largest SO2 vertical column amount (> 1000 Dobson Units (DU), where 1 DU = 2.69 × 1016 molecules/cm2) ever observed by a space borne instrument, implying that very high concentrations of SO 2 can occur in the lower troposphere during effusive eruptions. Copyright 2009 by the American Geophysical Union.
Publication Title
Geophysical Research Letters
Recommended Citation
Yang, K.,
Krotkov, N.,
Krueger, A.,
Carn, S.,
Bhartia, P.,
&
Levelt, P.
(2009).
Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations L03102.
Geophysical Research Letters,
36(3).
http://doi.org/10.1029/2008GL036036
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/8317