The unusually stable B < inf> 100 Fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets
Document Type
Article
Publication Date
3-18-2010
Abstract
Solid α-B12 rhombohedral and γ-B28 orthorhombic boron as well as boron nanostructures in the form of spheres, sheets, and multirings beside a ring consisting of icosahedral B12 units were investigated using ab initio quantum chemical and density functional methods. The structure of the B100 fullerene exhibits unusual stability among all noninteracting free-standing clusters, and is more stable than the B120 cluster fragment of the γ-B28 solid, recently predicted and observed by Oganov et al. (Nature 2009, 457, 863). In addition, we compared the stability of the multirings and reported the structural transition from double-ring to triple-ring systems. This structural transition occurs between B52 and B54 clusters. We confirm that the noninteracting free-standing triangular buckled-sheet is more stable than the γ-sheet, assembled in this work, and than the α-sheet, proposed by Tang and Ismail-Beigi (Phys. Rev. Lett. 2007, 99, 115501). In contrast, however, when these sheets are considered as infinite periodic systems, then the α-sheet remains the most stable one.©2010 American Chemical Society..
Publication Title
Journal of Physical Chemistry C
Recommended Citation
Zdoǧan, C.,
Mukhopadhyay, S.,
Hayami, W.,
Güvenc, Z.,
Pandey, R.,
&
Boustani, S.
(2010).
The unusually stable B < inf> 100 Fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets.
Journal of Physical Chemistry C,
114(10), 4362-4375.
http://doi.org/10.1021/jp911641u
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/8139