Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO < inf> 2 Nanowires
Document Type
Article
Publication Date
11-11-2015
Abstract
© 2015 American Chemical Society. There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.
Publication Title
Nano Letters
Recommended Citation
Asayesh-Ardakani, H.,
Nie, A.,
Marley, P.,
Zhu, Y.,
Phillips, P.,
Singh, S.,
Mashayek, F.,
Sambandamurthy, G.,
Low, K.,
Klie, R.,
Banerjee, S.,
Odegard, G.,
&
Shahbazian-Yassar, R.
(2015).
Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO < inf> 2 Nanowires.
Nano Letters,
15(11), 7179-7188.
http://doi.org/10.1021/acs.nanolett.5b03219
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/7819