Scale-dependent constitutive relations and the role of scale on nominal properties
Document Type
Article
Publication Date
11-1-2001
Abstract
Size effects in strength and fracture energy of heterogeneous materials is considered within a context of scale-dependent constitutive relations. Using tools of wavelet analysis, and considering the failure state of a one-dimensional solid, constitutive relations which include scale as a parameter are derived from a 'background' gradient formulation. In the resulting theory, scale is not a fixed quantity independent of deformation, but rather directly dependent on the global deformation field. It is shown that strength or peak nominal stress (maximum point at the engineering stress-strain diagram) decreases with specimen size while toughness or total work to fracture per nominal area (area under the curve in the engineering stress-strain diagram integrated along the length of the considered one-dimensional specimen) increases. This behavior is in agreement with relevant experimental findings on heterogeneous materials where the overall mechanical response is determined by variations in local material properties. The scale-dependent constitutive relations are calibrated from experimental data on concrete specimens.
Publication Title
European Journal of Mechanics, A/Solids
Recommended Citation
Frantziskonis, G.,
Konstantinidis, A.,
&
Aifantis, E.
(2001).
Scale-dependent constitutive relations and the role of scale on nominal properties.
European Journal of Mechanics, A/Solids,
20(6), 925-936.
http://doi.org/10.1016/S0997-7538(01)01167-6
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/7645