Document Type
Article
Publication Date
8-29-2018
Department
Department of Kinesiology and Integrative Physiology
Abstract
Background: Previous research suggests motion induced fatigue contributes to significant performance degradation and is likely related to a higher incidence of accidents and injuries. However, the exact effect of continuous multidirectional platform perturbations on energy cost (EC) with experienced personnel on boats and other seafaring vessels remains unknown.
Objective: The objective of this experiment was to measure the metabolic ECs associated with maintaining postural stability in a motion-rich environment.
Methods: Twenty volunteer participants, who were free of any musculoskeletal or balance disorders, performed three tasks while immersed in a moving environment that varied motion profiles similar to those experienced by workers on a mid-size commercial fishing vessel (static platform (baseline), low and high motions (HMs)). Cardiorespiratory parameters were collected using an indirect calorimetric system that continuously measured breath-by-breath samples. Heart rate was recoded using a wireless heart monitor.
Results: Results indicate a systematic increase in metabolic costs associated with increased platform motions. The increases were most pronounced during the standing and lifting activities and were 50% greater during the HM condition when compared to no motion. Increased heart rates were also observed.
Discussion: Platform motions have a significant impact on metabolic costs that are both task and magnitude of motion dependent. Practitioners must take into consideration the influence of motion-rich environments upon the systematic accumulation of operator fatigue.
Publication Title
PeerJ
Recommended Citation
Duncan, C.,
MacKinnon, S.,
Marais, J.,
&
Basset, F.
(2018).
Energy cost associated with moving platforms..
PeerJ,
6, 5439.
http://doi.org/10.7717/peerj.5439
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/744
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
Copyright 2018 Duncan et al. Publisher’s version of record: https://doi.org/10.7717/peerj.5439