Two crystalline pentofuranosyl bromides: tri-O-(p-nitrobenzoyl)-β-D-ribofuranosyl bromide and tri-O-(p-nitrobenzoyl)-α,β-D-xylofuranosyl bromide

Document Type

Article

Publication Date

1-1-1976

Abstract

Methyl α,β-D-ribofuranoside was p-nitrobenzoylated to give methyl tri-O-(p-nitrobenzoyl)-β-D-ribofuranoside (2),and this was treated with HBr in acetic acid to give tri- O-(p-nitrobenzoyl)-β-D-ribofuranosyl bromide (3). Bromide 3 could be converted into 2,5-anhydro-3,4,6-tri-O-(p-nitrobenzoyl)-D-allononitrile (4) with Hg(CN)2, or hydrolyzed to 2,3,5-tri-O-(p-nitrobenzoyl)-D-ribose (5). On p-nitro- benzoylation, 5 gave tetra-O-(p-nitrobenzoyl)-β-D-ribofuranose (6). The synthesis of tri-O-(p-nitrobenzoyl)-α-β-D-xylofuranosyl bromide (11) started with methyl 3,5-O-isopropylidene-β-D-xyldfuranoside (7), which was p-nitrobenzoylated to give ester 8; this was then hydrolyzed, and the product p-nitrobenzoylated to give methyl tri-O-(p-nitrobenzoyl)-β-D-xylofuranoside (10) which, on treatment with HBr in CH2Cl2, afforded the desired bromide (11). Nucleophilic replacement with Hg(CN)2 afforded 2,5-anhydro-3,4,6-tri-O-(p-nitrobenzoyl)-D-gulononitrile (12). © 1976.

Publication Title

Carbohydrate Research

Share

COinS