Microstructure control of MnO < inf> 2 /CNT hybrids under in-situ hydrothermal conditions

Document Type

Article

Publication Date

9-1-2010

Abstract

In this work, single-crystalline MnO2 nanoparticles were directly grown on the surface of multi-walled carbon nanotubes (CNTs) homogeneously under in-situ hydrothermal conditions, during which the CNTs were well dispersed in aqueous solution with the aid of dodecyl benzene sulphonic acid sodium (SDBS). This stable suspension ensures the continuous deposition of the MnO2 nanocrystals. It was found that the MnO2/CNTs nanocomposites formed in the presence of CNTs, but the MnO2 nanowires formed without CNTs under the same hydrothermal conditions. Moreover, the as-synthesized MnO2/CNTs sample showed a high specific capacity and cycling stability, which was ascribed to its highly-homogeneous hybrid nanostructure. This homogeneous MnO2/CNTs nanocomposite is shown to be able to take full advantages of both the high capacity of MnO2 and the high electron conductivity of CNTs by integrating them homogeneously. This homogeneous hybrid nanostructure is a promising electrode material for energy storage/conversion devices with excellent performances. © 2010 Elsevier Masson SAS. All rights reserved.

Publication Title

Solid State Sciences

Share

COinS