Document Type

Article

Publication Date

10-15-2018

Department

Department of Geological and Mining Engineering and Sciences

Abstract

Volcanic sulfur dioxide (SO2) emissions have been measured by ultraviolet sensors on polar‐orbiting satellites for several decades but with limited temporal resolution. This precludes studies of key processes believed to occur in young (~1–3 hr old) volcanic clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided an opportunity for novel observations of volcanic eruption clouds from the first Earth‐Sun Lagrange point (L1). The L1 vantage point provides continuous observations of the sunlit Earth, offering up to eight or nine observations of volcanic SO2 clouds in the DSCOVR/EPIC field of view at ~1‐hr intervals. Here we demonstrate DSCOVR/EPIC's sensitivity to volcanic SO2 using several volcanic eruptions from the tropics to midlatitudes. The hourly cadence of DSCOVR/EPIC observations permits more timely measurements of volcanic SO2 emissions, improved trajectory modeling, and novel analyses of the temporal evolution of volcanic clouds.

Publisher's Statement

©2018. The Authors. Article deposited here in compliance with publisher policies. Publisher's version of record: https://doi.org/10.1029/2018GL079808

Publication Title

Geophysical Research Letters

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.