"Melatonin reprogrammes proteomic profile in light-exposed retina in vi" by Ruonan Zhang, William J.M. Hrushesky et al.
 

Melatonin reprogrammes proteomic profile in light-exposed retina in vivo

Document Type

Article

Publication Date

8-1-2010

Department

Department of Biological Sciences

Abstract

Melatonin, a small organic molecule synthesized by the pineal gland and the retina, has a variety of physiologic functions such as circadian clock pacemaker and antioxidant. Retinal melatonin is down-regulated by light and is barely detectable during the day. The absence of melatonin in the retina during prolonged light exposure may contribute to light-induced retinal degeneration. We sought to investigate the impact of melatonin in the light-exposed retina using proteomic approaches. We exposed mice to either light (250-300lux) for 12h followed by 12h of darkness or the same intensity of continuous light for 7 days. In half of the animals exposed to continuous light, melatonin was injected each night. Proteomic analysis of the retina from these three groups of animals showed that five proteins prominently up-regulated by constant light were down-regulated by melatonin treatment. These five proteins were identified as vimentin, serine/threonine-protein phosphatase 2A, Rab GDP dissociation inhibitor alpha, guanine nucleotide-binding protein Go alpha, and retinaldehyde-binding protein.These five proteins are known to be involved in several cellular processes that may contribute to light-induced retinal degeneration. Identification of melatonin target proteins in our study provides a basis for future studies on melatonin's potential in preventing or treating light-induced retinal degeneration.

Publication Title

International Journal of Biological Macromolecules

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 13
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 21
see details

Share

COinS